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When the Weniger transformation is systematically used in resumming the asymptotic series arising from the
application of the steepest descent method can display dramatic numerical instabilities that prevent it from
improving the accuracy achievable via superasymptotics. In the present paper an explanation of such patholo-
gies through the concept of resurgence, introduced by Berry and Howls several years ago within the context of
hyperasymptotics, is proposed. In particular, the way the topology of the whole set of the saddles influences the
resummation capabilities of the Weniger transformation is here investigated for the integrals defining the
lowest-order cuspoid diffraction catastrophes. Eventually, a powerful and easily implementable resummation
scheme, based on a joint use of the Weniger transformation and hyperasymptotics, is proposed for taking care
of the above pathologies. Such a joint action seems to encompass the main virtues of both approaches, and the
preliminary numerical results obtained from its application show that relative errors several orders of magni-
tude smaller than those achievable via superasymptotics can be achieved with modest implementation efforts.
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I. INTRODUCTION

Asymptotics finds a natural field of applications at the
borderlands between physical theories, such as for instance
classical and quantum mechanics, physical and geometrical
optics, statistical mechanics and thermodynamics, where
finding the solution of several problems requires one to
evaluate integrals of the form

I�k� = �
C

g�z�exp�− kf�z��dz , �1�

where C is a suitable integration path in the complex z plane
and g�z� and f�z� are functions which, for simplicity, will be
assumed to be nonsingular. Moreover, k is customarily in-
tended as a “large” parameter, similar to the wave number in
physical optics, or the inverse of the Planck’s constant in
quantum mechanics, or even the Reynold’s number in fluid
mechanics �1�. While it is a well-known fact that the leading
term of the asymptotic expansion, with respect to 1 /k, of
integrals such as those in Eq. �1� can be obtained by simply
summing all the leading contributions coming from the dif-
ferent saddle points of f�z� belonging to the integration path
�2�, likely it is less known that all higher-order terms can be
systematically evaluated and arranged in the form of power
series, following a procedure introduced by Dingle �3�. The
main feature of Dingle series is represented by their diver-
gent character, which is much more evident whenever the
evaluation of I�k� is attempted for “nonlarge” values of �k�,
i.e., beyond asymptotics.

In the present paper we are interested in studying accurate
numerical evaluations of integrals of the type in Eq. �1� by
means of resummation of the divergent series associated with
the contributions coming from each saddle belonging to C.
Among the numerical techniques developed, since Euler’s
time, for the resummation of divergent series �4�, our interest
is focused on the so-called � or Weniger transformation �WT
for short� proposed, at the end of the 1980s, by Weniger �5�

to convert the sequences of the partial sums of factorial di-
vergent series into new sequences, quickly converging to-
ward the limit of the starting series. Since its introduction,
the WT has successfully been applied for solving several
problems in quantum mechanics �6–9� and, more recently, its
use has also been proposed within the optical realm �10–13�.
Concerning the use of the WT for evaluating integrals in Eq.
�1�, the idea is quite simple: since the asymptotic series as-
sociated to each contributive saddle display a factorial diver-
gent character �3�, and due to the fact that the WT has been
designed especially for dealing with series endowed with
such type of divergence, we should expect the value of I�k�
to be quickly and accurately retrieved with a modest compu-
tational effort. Unfortunately, while in several situations the
above-described scenario corresponds to the truth, there are
some pathological, but nevertheless important, cases in
which the WT revealed to be unable to accomplish the de-
sired resummation process. In a sense, such failures reflect
the extreme “specialization” of the WT which, for the resum-
mation of factorial divergent series to be successfully
achieved, requires an alternating character of the sequence of
its single terms �14�. A simple but important example of the
above pathology is given by the asymptotic evaluation of the
Airy function in the neighborhood of a Stokes line, for which
it is easy to show that the corresponding asymptotic factorial
series becomes nonalternating. As a consequence, it turns
out to be no longer resummable via the WT �14,15�. More-
over, different pathological situations, not attributable to a
pure nonalternating divergent character of the asymptotic se-
ries, in which the WT fails in achieving the resummation can
still occur, an example of these being furnished by the evalu-
ation of the Pearcey function for certain choices of its
arguments.

The aim of the present paper is twofold. First, a way of
interpreting the possible failures of the WT is proposed in
terms of the so-called resurgence property discovered, in the
context of asymptotics, by Berry and Howls �16,17�. With
this approach, the divergent character of the asymptotic se-
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ries arising from the steepest-descent treatment of Eq. �1�
was ascribed to the presence of other saddles, not belonging
to the integration path C �17�. As a matter of fact, the
asymptotic, i.e., for large indexes, behavior of the expanding
coefficients turns out to be strongly influenced by the topol-
ogy of the whole set of saddles of f�z�. By using this strategy
some pathological situations in which the WT is expected to
fail can then easily be identified. As a second, more opera-
tive, task, the present paper is pursuing the hope that the
resummation capabilities of the WT, together with its re-
markably implementation ease, can still be employed even in
the presence of pathological saddle topologies. The idea con-
sists in trying to operate a sort of “regularization” on the
single terms of the original pathological diverging series in
order for them to acquire the required alternating character.
We propose as a possible simple way to achieve such a regu-
larization the first stage of the so-called hyperasymptotics
�H for short� �16,17�. In particular, by carrying out a series of
preliminary numerical experiments concerning the
asymptotic evaluation, via Eq. �1�, of the Airy and the
Pearcey functions, it will be found that such a joint use of H
and of the WT �H-WT henceforth� allows relative errors
comparable with those achievable by the WT for nonpatho-
logical cases �corresponding to relative errors several orders
of magnitude smaller than those achievable via superasymp-
totics� to be obtained with modest computational efforts and
implementation ease of the same level as in the WT alone.

To keep the paper reasonably self-consistent, in the next
section a brief review of the Dingle method within the steep-
est descent treatment of integrals in Eq. �1� is provided, to-
gether with a basic description of the WT.

II. REVIEW OF THE DINGLE METHOD AND OF THE WT

A. Steepest descent and the Dingle method

For simplicity, we suppose the two functions f�z� and g�z�
to be analytic in the complex plane. Furthermore, all saddle
points, say �zn�, which are defined through the equation

	df�z�
dz

	
z=zn

= 0, �2�

are supposed to be simple, i.e., such that f��zn��0 for any n.
The set of the saddle points of f�z� will be denoted S, and the
integration path C will be thought of, thanks to the nonsin-
gularity of g�z� and f�z�, as the union of a finite number of
steepest descent arcs, each of them, say Cn, passing through
the contributive saddle point zn. Accordingly, the quantity
I�k� can generally be written as

I�k� = �
C

g�z�exp�− kf�z��dz = 

n�S�

I�n��k� , �3�

where S� denotes the subset of S containing all the contribu-
tive saddles and

I�n��k� = �
Cn

g�z�exp�− kf�z��dz . �4�

The last integral can be written as �17�

In�k� = k−1/2 exp�− kfn�T�n��k� , �5�

where fn= f�zn�, and where T�n��k� can formally be written
through the following asymptotic series expansion:

T�n��k� = 

r=0

�

k−rTr
�n�, �6�

the expanding coefficients Tr
�n� being expressed via the inte-

gral representation �17�

Tr
�n� =

�r − 1/2�!
2�i

�
n

g�z�
�f�z� − fn�r+1/2dz . �7�

Note that the subscript n denotes a small positive loop
around the saddle zn, and, in the neighborhood of zn, f�z� can
always be expanded as

f�z� − fn = �z − zn�2Un�z� , �8�

where Un�z� is a function which turns out to be regular at zn.
By substituting from Eq. �8� into Eq. �7�, and by using
Cauchy theorem, it is found at once that

Tr
�n� =

�r − 1/2�!
�2r�! � d2r

du2r

g�u + zn�
�Un�u + zn��r+1/2

u=0
. �9�

The series expansion in Eq. �6� is asymptotic with respect to
1 /k. This implies that, for large values of �k�, estimates of
I�n��k� with sufficient accuracy can be achieved by taking
into account only a few terms of the series. However, things
are much more troublesome and delicate when such series
are attempted to be used beyond the asymptotic regime, as in
our case. In this case, in fact, the factor �r−1 /2�! in Eq. �9�
dominates for large values of r and, as a consequence, the
sequence of the partial sums of the series diverges following
a factorial law.

B. The Weniger transformation

An important feature of several classes of factorial diver-
gent series is that they can be efficiently decoded by using
suitable nonlinear transformation schemes. Such transforma-
tions, once acting on the sequence of the partial sums, are
able to convert it into new sequences which quickly con-
verge to the so-called antilimit of the starting diverging se-
ries. As hinted in the introduction, for factorial divergence
the � or Weniger transformation �WT for short� represents
one of the most efficient resummation transformations �5�.
Generally speaking the WT, when applied to the sequence of
the partial sums, say �Sn�, Sn=
 j=0

n aj �n=0,1 , . . . � of a series,
converts it into a new sequence, say ��k� �k=1,2 , . . . �, de-
fined by �5�

�k =



j=0

k

�− 1� j�k

j
��1 + j�k−1

Sj

aj+1



j=0

k

�− 1� j�k

j
��1 + j�k−1

1

aj+1

, �10�

where �·�k denotes the Pochhammer symbol �18�. For a full
and rigorous presentation of the theoretical basis of nonlinear
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transformations, and of the WT in particular, the interested
reader is encouraged to consult the available large bibliogra-
phy and, in particular, Refs. �5,19,20�. As previously said,
our aim is to investigate the possibility of using WT even in
the presence of pathological situations, leading for instance
to nonalternating series, for which the direct use of the WT
does not allow the integral in Eq. �1� to be correctly re-
trieved. In the next section we show two examples of
asymptotic evaluation of phase integrals in which the above
pathologies are clearly manifested.

III. TWO EXAMPLES OF PATHOLOGICAL SITUATIONS
FOR THE WT

A. Preliminaries

In the present section we are going to show a couple of
examples concerning the asymptotic evaluation of phase in-
tegrals of the type in Eq. �1� for which the direct use of the
WT leads to numerical instabilities. The examples we are
going to deal with concerns two special functions playing a
role of pivotal importance in optics and quantum mechanics,
namely the Airy and the Pearcey functions.

B. Airy function

Consider the evaluation of the Airy function defined by

Ai�x� =
1

2�
�

C
exp�i� z3

3
+ xz��dz , �11�

which is of the form given in Eq. �1� with g�z�=1 / �2��,
f�z�=−i�z3 /3+xz�, and k=1. There are two saddles, say z�,
given by z�= � �−x�1/2. The path C consists of the steepest
descent arcs which, for �z�→�, must necessarily asymptoti-
cally approach the directions �= �2n+1 /2�� /3, with n
=0,1 ,2. In particular, when arg�x��2� /3C=C+, i.e., only
one saddle �and precisely z+� does contribute to the integral,
i.e., Ai�x�=I�+��1�. On the contrary, when arg�x��2� /3 it
turns out that C=C+�C−, i.e., even the saddle z− becomes
fully contributive, so that Ai�x�=I�+��1�+I�−��1�. Finally,
when arg�x�=2� /3, i.e., at the Stokes line, the contribution
to the total integral coming from z− must be weighted with a
factor 1 /2, so that Ai�x�=I�+��1�+I�−��1� /2 �21�. As far as
the expanding coefficients are concerned, we have that
U��z�= �z+3z�� /3i so that, from Eq. �9�, after straightfor-
ward algebra it is found that

Tr
��� =

1

2��

ir+1/2

z�
3r � 1

36
�r �3r − 1

2�!

r!�r − 1
2�!

. �12�

In Table I the results of a first numerical experiment, con-
cerned with the numerical evaluation of the Airy function for
x= �3 /4	16�2/3, are presented. The same experiment was
already considered in Ref. �16�, whose results will be used
later for comparison purposes. It is seen how, in the present
case, 14 single terms of the original series are sufficient to
retrieve the values of the Airy function up to nearly 20 fig-
ures. Although, by quoting Berry, “… I would like to hear
from anybody who needs the Airy function to 20 decimals,
but am not expecting an early call” �22�, the results given in

Table I provide a realistic idea about the resummation capa-
bilities of the WT. Consider now, as a second experiment, the
evaluation of the Airy function at the Stokes line, i.e., for
�x�= �3 /4	16�2/3 and arg�x�=2� /3. From what is said
above, both the contributions I����1� have to be evaluated.
As far as I�−��1� is concerned, it turns out that 13 single
terms are sufficient to obtain an estimate accurate up to 20
figures, but the same is not true for the contribution I�+��1�.
The results are shown in Table II, where the sole relative
error is reported as a function of the WT order n. It is clearly

TABLE I. The action of the WT on the sequence of the partial
sum of the asymptotic series of the Airy function Ai�x� for Airy
function for x= �3 /4	16�2/3. First column: sequence index. Second
column: estimate provided by the WT. Third column: relative error.
The number of digits used in the numerical calculations was set to
20.

n Weniger �n Rel. error

2 6.2033672725872058228	10−5 3	10−5

3 6.2031902884950443666	10−5 10−6

4 6.2032021455073140033	10−5 10−7

5 6.2032014734562527659	10−5 5	10−9

6 6.2032015096234582762	10−5 3	10−10

7 6.2032015077493629066	10−5 10−11

8 6.2032015078412871931	10−5 6	10−13

9 6.2032015078371437062	10−5 3	10−14

10 6.2032015078373072958	10−5 8	10−16

11 6.2032015078373021565	10−5 2	10−17

12 6.2032015078373022499	10−5 2	10−19

13 6.2032015078373022516	10−5 10−19

14 6.2032015078373022514	10−5 0

TABLE II. Instability in WT across the Stokes line for the
Airy function. The same as in Table I, but for
x= �3 /4	16�2/3 exp�i2� /3−�. Note that only relative error is
shown. The relative error obtained with the superasymptotic ap-
proximation is about 6	10−8.

n Rel. error

2 5	10−5

3 7	10−6

4 10−6

5 3	10−7

6 10−7

7 3	10−8

8 6	10−9

9 7	10−8

10 2	10−7

11 2	10−8

12 6	10−8

13 10−7

14 3	10−9

15 2	10−7
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seen how in this case the WT is unable to improve the accu-
racy of the estimate of the Airy function obtained by using
standard superasymptotics �22,23�, i.e., by truncating the
starting diverging series at its least term, which provides a
relative error of 6	10−8.

C. Pearcey function

The Pearcey function P�x ,y� is defined through the
equation

P�x,y� = �
C

exp�i� z4

4
+ x

z2

2
+ yz��dz , �13�

where x and y are complex numbers �24�. By comparing Eqs.
�13� and �1�, the Pearcey function corresponds to the choice
k=1, g�z�=1, and f�z�=−i�z4 /4+xz2 /2+yz�. As far as the
steepest descent path C is concerned, since f�z��−iz4 for
large �z�, it must asymptotically approach the directions �
= �2n+1 /2�� /4, with n=0, . . . ,3, while the position of the
three saddles, say zn �n=1, . . . ,3�, can be analytically ob-
tained from Eq. �2� via standard algebraic formulas. More-
over, the expanding coefficients Tr

�n� corresponding to the
saddle zn are given by the following closed-form expression
�17�:

Tr
�n� =

�2ir+1/2�r −
1

2
�!

zn
4r+1�3 +

x

zn
2�2r+1/2C2r

r+1/2�� 2

3 + x/zn
2� , �14�

where Cr
m�·� denotes the Gegenbauer polynomial �18�. Of

course, also in the case of the Pearcey function the Stokes
phenomenon occurs. For instance, in the case of real values
of the parameters �x ,y�, Wright found that a Stokes set is
defined by the surface of equation 27y2− �5+3�3�x3=0 �25�.
From what is said above, we expect that the WT will fail in
evaluating the Pearcey function there. Nevertheless, in the
present section we are more interested to show sources of
instabilities for the WT which are not directly connected to
Stokes phenomena, which will be considered later. In doing
so, we consider first the evaluation of the Pearcey function at
the complex pair �x ,y�= �7,1+ i�. The same numerical ex-
periment was already considered in Ref. �17�, and we shall
use later the corresponding results for comparison purposes.
For the above choice of the pair �x ,y�, the corresponding
saddle topology leads to a steepest descent integration path
involving only one of the three saddles, so that only one
asymptotic series has to be evaluated. Of the three saddles,
namely z1�0.0776212. . .−i2.57482. . ., z2�−0.143675. . .
−i0.14201. . ., and z3�0.066054. . . + i2.71683. . ., only z2
contributes to the asymptotic evaluation of the Pearcey func-
tion, i.e., P�x ,y�=I�2��1�. In Table III, the relative error, ob-
tained with respect to the 15-figure “exact” value provided in
Ref. �17�, is reported as a function of the WT order n.

It is seen how, in the present case, the WT is able to
achieve a relative error of about 10−12 by using 13 terms,
whereas 24 terms are sufficient to fully retrieve the “exact”
15-digit value. A radically different situation is displayed for
the pair �x ,y�= �7,1 /�2�, which has also recently been ex-

amined in Ref. �26� by using a hyperasymptotic approach
based on Hadamard expansions. As for the previous case,
of the three saddles z1�0.0504343. . .−i2.64719. . ., z2

�−0.100869. . ., and z3=z
1
*�0.0504343. . . + i2.64719. . .,

only z2 contributes to the asymptotic evaluation of the
Pearcey function, so that also in this case P�x ,y�=I�2��1�.
However, now the behavior of the relative error versus n,
which has been evaluated with respect to the 20-digit “exact”
value provided in Ref. �26� reveals the inability of the WT to
go beyond the error level, about 6	10−8, obtained through
the superasymptotic least-term truncation, as reported in
Table IV.

It should be noted how a rather similar pathological situ-
ation is displayed �not shown for brevity in the present sec-
tion� when the Pearcey function is evaluated via the WT at
the pair �x ,y�= �−4,12 /�2�, in which case the set S� consists
of two contributive saddles �26�. Also this case will be con-
sidered later for comparison purposes.

D. Discussion

The above-described numerical experiments give evi-
dence about the inability of the WT in doing the job in cer-
tain pathological situations. From a mere computational

TABLE III. The same as in Table I, but for the numerical evalu-
ation of the Pearcey function at the complex pair �x ,y�= �7,1+ i�.
The relative error is evaluated with respect to the 15-digits “exact”
value provided in Ref. �17�. The number of digits has been fixed to
15.

n Weniger �n Rel. error

2 0.788896466486375+0.751997407638978i 10−4

3 0.788914710309079+0.752114814531054i 10−5

4 0.788924392759829+0.752103988027836i 10−6

5 0.788922823746154+0.752103897014747i 6	10−8

6 0.788922864549319+0.752103946845074i 3	10−8

7 0.788922838583707+0.752103952575956i 7	10−9

8 0.788922837830415+0.752103958064321i 2	10−9

9 0.788922837548435+0.752103959286292i 4	10−10

10 0.788922837601425+0.752103959634780i 10−10

11 0.788922837602631+0.752103959721517i 4	10−11

12 0.788922837599937+0.752103959746942i 10−11

13 0.788922837597681+0.752103959755574i 3	10−12

14 0.788922837597076+0.752103959758409i 8	10−13

15 0.788922837597028+0.752103959759183i 8	10−14

16 0.788922837597044+0.752103959759296i 8	10−14

17 0.788922837597029+0.752103959759270i 6	10−14

18 0.788922837597002+0.752103959759244i 3	10−14

19 0.788922837596983+0.752103959759236i 10−14

20 0.788922837596973+0.752103959759237i 7	10−15

21 0.788922837596970+0.752103959759239i 3	10−15

22 0.788922837596969+0.752103959759241i 10−15

23 0.788922837596969+0.752103959759242i 10−15

24 0.788922837596969+0.752103959759243i 0
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viewpoint, they could be ascribed to the particular math-
ematical structure of Eq. �10�, which, as explained in Ref.
�14�, was explicitly conceived for resumming alternating
factorial divergent series. The price to be paid for such a
“specialization” is that it tends to become numerically highly
unstable in presence of deviations from this divergence law
�14�. This was particularly evident for the evaluation of the
Airy function on the Stokes set, when the asymptotic series
defining I�+��1� turned out to be no longer alternating, as can
easily be checked by letting x=
 exp�i2� /3� into Eq. �12�,
which led to Tr

�+��0 for any r. The explanation of the WT
failure in the Pearcey function evaluation described in Sec.
III C requires a deeper understanding of the mechanisms
which generate the divergence of the asymptotic series. As
we shall see in the next section, a simple interpretation of the
above-described WT pathologies can be given in terms of the
so-called resurgence property discovered, in the context of
the asymptotics, by Berry and Howls at the beginning of
1990s �16,17�. Following this approach, in the next section it
will be shown how the above failures of the WT for the
asymptotic series resummation can directly be ascribed to
particular saddle topologies associated to the function f�z�,
which lead to asymptotic laws for the expanding coefficients
not suitable for the WT to successfully operate the resumma-
tion.

IV. USING RESURGENCE TO INTERPRET THE FAILURE
OF THE WT

For the sake of clarity, it is worth briefly reviewing the
concept of resurgence. We shall strictly follow the notations

of Ref. �17�. Loosely speaking, Berry and Howls discovered
that the divergent character of the asymptotic series in Eq.
�6� can be interpreted as due to the presence of other saddles,
say zm, with n�m, which do not belong to the steepest de-
scent path Cn. Such saddles, called “adjacent” to zn, must be
identified via a topological rule. The starting point is again
Eq. �6�, which is now rewritten in the alternative form �27�

T�n��k� = 

r=0

N−1

k−rTr
�n� + R�n��k,N� , �15�

where N represents a truncation index and R�n��k ,N� denotes
the corresponding remainder. The analysis of Ref. �17�
started from the following integral representation of the re-
mainder:

R�n��k,N� =
1

2�ikN�
0

�

du exp�− u�uN−1/2

	 �
�n

dz
g�z�

�f�z� − fn�N+1/2�1 −
u

k�f�z� − fn� ,

�16�

where �n denotes a “sausage” positive infinite loop encir-
cling the steepest descent path Cn �17,28�. The next step is to
let �n expanding in such a way for it to intercept those
saddles which are adjacent to zn. We shall denote by An the
set containing the indexes pertinent to all saddles adjacent to
zn. In the cases we have considered in Sec. III, the corre-
sponding sets of adjacent saddles are immediately identified.
For instance, in the case of the Airy function, where only two
saddles, z�, are involved, it turns out that A�= ���. On the
contrary, in the case of the Pearcey function the set An de-
pends on the choice of the pair �x ,y�. Thanks to the analyt-
icity of f and g, the expanded loop �n can be deformed into
the union of arcs at infinity and arcs passing through all
adjacent saddles zm with m�An. Nontrivial algebra eventu-
ally gives for the remainder R�n��k ,N� �17�

R�n��k,N� =
1

2�i



m�An

�− 1�nm

�kFnm�N

	 �
0

�

dv
vN−1 exp�− v�

1 −
v

kFnm

T�m�� v
Fnm

� , �17�

where the quantities Fnm, called singulants, are given by

Fnm = fm − fn, �18�

and the binary quantities nm� �0,1� are obtained through a
topological rule �17�. Resurgence followed from Eq. �17� in
the form of a relationship between the expanding coefficients
at the saddle zn, Tr

�n�, and those at all its adjacent saddles, Tr
�m�

�m�An�. More precisely, it was found that �17�

TABLE IV. The same as in Table III, but for the numerical
evaluation of the Pearcey function at the pair �x ,y�= �7,1 /�2�. The
relative error is evaluated with respect to the 20-digits “exact” value
provided in Ref. �26�.

n Rel. error

2 8	10−5

3 8	10−6

4 6	10−7

5 2	10−8

6 10−8

7 9	10−9

8 8	10−9

9 10−8

10 6	10−8

11 6	10−8

12 6	10−8

13 6	10−8

14 6	10−8

15 6	10−8

¯

20 7	10−8

21 7	10−8

22 7	10−8

23 6	10−8
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Tr
�n� =

1

2�i



m�An

�− 1�nm

l=0

�
�r − l − 1�!

Fnm
r−l Tl

�m�, �19�

which, although in principle being only formal �because the
factorials are infinite as l�r−1�, constitutes a possible way
for interpreting the failures of the WT above illustrated. In
fact, consider the asymptotic expression, for large r, of Tr

�n�

which, from Eq. �19�, turns out to be

Tr
�n� �

�r − 1�!
2�i



m�An

�− 1�nmT0
�m�

Fnm
r . �20�

If, among the adjacent saddles zm, there is just one, say zm̄,
called dominant, such that Fnm̄ takes the minimum modulus,
then Eq. �20� can be approximated by

Tr
�n� �

�− 1�nm̄T0
�m̄�

2�i

�r − 1�!
Fnm̄

r , �21�

which corresponds to a pure asymptotic factorial divergence
law for the late terms of the series in Eq. �6�. When the Airy
function has been evaluated in Sec. III B across the Stokes
line, we found that the contribution I�+��1� was not properly
retrieved. This happened because A+= �−� and the singulant
F+−, which is given by

F+− = f− − f+ = −
4

3
x3/2, �22�

for x= �x�exp�i2� /3� turns out to be real and positive. Ac-
cordingly, from Eq. �21� the asymptotic expansion of I�+��1�
is a factorial divergent nonalternating character, as we al-
ready found through the elementary analysis of Sec. III B.

Concerning the Pearcey function, we refer to the results
reported in Tables III and IV, respectively. In both cases
P�x ,y�=I�2��1� and A2= �1,3�. However, for the case of
Table III there is a dominant adjacent saddle to z2, and pre-
cisely z1, being �F21��9.90429. . . and �F23��15.1688. . . .
Accordingly, Eq. �21� applies and, due to the fact that F21
assume a complex value, the resulting series asymptotically
diverges with an alternating factorial character, thus allowing
the WT to quickly converge. The situation is different for
the experiment of Table IV, where z3=z

1
*, so that, since F23

=−F
21
* , both adjacent saddles do contribute to the asymptotic

expression of the late term Tr
�2�. In particular, from Eq. �14� it

can be possible to show that T0
�3�= i�T0

�1��*, so that Eq. �20�
eventually leads to

Tr
�2� � �− �

�r − 1�!
2�i

�T0
�1�

F21
r + i�T0

�1�

F21
r �* , �23�

where the fact that 21=0 and 23=1 has been taken into
account �17�. It is interesting to compare the approximate
behavior, as a function of r, of the modulus of Tr

�2� given by
the asymptotic law in Eq. �23�, with that obtained from the
exact expression in Eq. �14�, which are reported, as a solid
curve and dots, respectively, in Fig. 1. Accordingly, we con-
clude that the expanding coefficients Tr

�2� do not display the
asymptotic alternating factorial divergence of Eq. �21�, so
that WT is expected to fail.

V. THE H-WT RESUMMATION PROCEDURE

In the previous section the resurgence concept has suc-
cessfully been used to give a possible “topological” interpre-
tation of the failures of the WT described in Sec. III. Resur-
gence, however, has also operative implications, it being the
basis of the so-called hyperasymptotics �H for short� �16,17�.
Differently from the WT, H was not conceived as a mere
resummation tool, but rather as an elegant interpretation
scheme of the above described divergences based on a,
nearly aesthetic, iterated optimal truncation, or superasymp-
totic, principle. Very roughly speaking, the action of H can
be summarized as follows: starting from the sequence �Tr

�n��,
a first optimal truncation is operated, leading to the superas-
ymptotic estimate. With reference to Eq. �15�, this means to
truncate the series at its least term. As far as the �divergent�
tail, represented by the remainder R�n��k ,N�, is concerned, by
using the resurgence property in Eq. �17�, after long and
nontrivial analysis, Berry and Howls found that it can for-
mally be rewritten as a sum of asymptotic series whose
single terms involved the expanding coefficients Tr

�m� perti-
nent to all adjacent saddles, i.e., with m�An. More pre-
cisely, substitution from Eq. �6� into Eq. �17� led, after non-
trivial algebra, to the following expression for the remainder
�17�:

R�n��k,N� =
�− 1�N

2�i



m�An

�− 1�nm

	 

r=0

�
�− 1�r

kr Tr
�m�KN−r

�1� �− kFnm� , �24�

where the function Kn
�1����, called terminant of order 1

�16,17�, is defined through the integral

Kn
�1���� =

1

�n�
0

�

dv
vn−1 exp�− v�

1 +
v
�

, �25�

where, in order for it to converge, n�0. Note that the inte-
gral in Eq. �25� can be expressed through the closed-form
expression

10 20 30 40 50
order

10�5

0.01

10

104

107

Modulus of the single term

FIG. 1. Behaviors, as functions of the order r, of the modulus of
Tr

�2� given by Eq. �14� �dots� and that given by the asymptotic law in
Eq. �23� �solid curve� for the pair �x=7,y=1 /�2�.
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Kn
�1���� = exp����En���

�n−1 �n − 1�! + �− 1�n−1i��� , �26�

where En�·� denotes the exponential integral function, while
� equals 1 if ��0 and zero otherwise. From a mere math-
ematical viewpoint, the presence of the term containing � has
to be ascribed to the evaluation of the integral in Eq. �25�, for
��0, in the Cauchy principal-value sense. As we shall see
in the next section, this is a crucial point for allowing the WT
to be still used across the Stokes sets. Equation �24� repre-
sents the first hyperasymptotic stage, at which the divergence
of the series in Eq. �6� is led back to the presence of adjacent
saddles �17�. Of course, the asymptotic series in Eq. �24� are
only formal, since for r�N the terminant KN−r

�1� diverges. The
main idea of H consists in superasymptotically truncating
each of the asymptotic series in Eq. �24� at optimal trunca-
tion indexes Nm�N, with m�An. In this way a first hypera-
symptotic correction is obtained which, once summed to the
above described superasymptotic estimate, provides a first
hyperasymptotic estimate for I�n�. Of course, in doing so, for
each adjacent saddle zm a new divergent remainder will be
generated. By iterating the above optimal truncation and re-
summation procedure on each remainder a series of higher-
order hyperasymptotic corrections is then generated �16,17�.
It is clear that, since at each hyperasymptotic step each
asymptotic series is shorter than its predecessor, and eventu-
ally contains only one term, H necessarily comes at a natural
halt �16,17,22�. As a consequence the accuracy level that can
be reached with H is lower bounded. For instance, in the
particular case of only two involved saddle, as for the Airy
function, such a lower bound turns out of the order of
exp�−�1+2 ln 2��kF+−�� �16�. On comparing the results of
Tables I and III with those reported in Table 1 of Ref. �16�
and Table 1 of Ref. �17�, respectively, it is seen how WT
provides relative errors which are orders of magnitude
smaller than the corresponding hyperasymptotics bounds.
This, of course, is true only for the nonpathological cases
examined so far. The situation is completely upset in the
pathological cases above described where, differently from
the WT, H appears to be rather insensitive with respect to the
“input data,” as can be realized by comparing the results in
Tables 1 and 2 of Ref. �16�, corresponding to the same ex-
periments performed in Tables I and II of the present paper,
respectively.

For what we seen and said so far, it appears that the WT
and H possess features that make them, in a sense, comple-
mentary. However, rather than using them separately, we
wonder whether their use could be arranged in a joint fash-
ion, in order to conceive a resummation method which could
be endowed with the main virtues of both approaches in
terms of convergence speed, implementation ease, and insen-
sitivity with respect to the input data. We believe the answer
to be in the affirmative. In particular, the idea we are going to
pursue in the rest of the present paper is to use, when dealing
with the WT pathologies, only the first stage of H �see Eq.
�24�� as a preliminary step before the WT to be applied.
Accordingly, only the saddles adjacent to zn will be involved,
and the single terms of all the asymptotic series in Eq. �24�
will be obtainable via simple closed-form expressions. This,

in particular, will keep the computational effort and the
implementation ease at the same level of that pertinent to the
WT which, of course, represents one of the main tasks of the
present work. Furthermore, the hope is that, as far as the
pathological cases we have examined in Sec. III are con-
cerned, each asymptotic series associated to the remainder
could be efficiently resummed via the WT. It should also be
stressed that, differently from H, no optimal truncation on
the starting series is performed, but rather the order N is left
as a free parameter. This represents an important point, be-
cause, in order for the WT to be applied to the asymptotic
series in Eq. �24�, the values of the index r are upper
bounded by N. In the next section, for the sake of clarity, the
cases of the Airy and the Pearcey functions will be treated
separately.

VI. NUMERICAL RESULTS

A. Airy function

Consider again the second experiment done in Sec. III B,
i.e., the evaluation of the Airy function at the Stokes line. As
seen in Sec. III B, of the two contributions I����1�, only that
pertinent to z+�−1.9827. . . + i1.14471. . . has to be recalcu-
lated via the H-WT because of the nonalternating character
of the sequence �Tr

�+��. In particular, A+= �−�, where
z−=−z+, while it turns out that +−=0. In Table V the behav-

TABLE V. Joint action of H-WT for the pathological case
treated in Table II for the numerical evaluation of the Airy function
at x= �3 /4	16�2/3 exp�i2� /3−�, i.e., across the Stokes line. First
column: truncation order. Second column: relative error obtained
via H-WT. The number of digits used in the numerical calculations
was 22. The same numerical experiment was done in Ref. �16� �see
Table 2 therein�.

N Rel. error

2 5	10−5

3 9	10−7

4 2	10−8

5 5	10−10

6 10−11

7 5	10−13

8 2	10−14

9 8	10−16

10 3	10−17

11 2	10−17

12 6	10−18

13 2	10−18

14 8	10−19

15 3	10−19

16 10−19

17 6	10−20

18 3	10−20

19 2	10−20

20 0
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ior of the relative error, obtained for different values of the
truncation order N, is reported.

By comparing these results to Table II, it is now clear how
the H-WT turns out to be quite efficient in evaluating the
Airy function with good accuracies. A further comparison
could also be done with the results presented in Table 2 of
Ref. �16�, where the same numerical experiment was carried
out via a full H. It is seen at once, as hopefully expected, that
the H-WT seems to have gained the virtues of both ap-
proaches, namely the insensitivity with respect to the initial
data �H� and a good computational efficiency �WT�.

B. Pearcey function

As far as the evaluation of the Pearcey function is con-
cerned, we present the results obtained on three experiments
carried out on the pairs �x ,y�= �7,1 /�2�, �x ,y�
= �−4,12 /�2�, and �x ,y�= �−7,1 /�2�. In particular, the
results obtained on the first pair by directly using the WT
were previously reported in Table IV of Sec. III C. More-
over, all numerical experiments have also been considered in
Ref. �26�, so that, as done for the Airy function, we shall use
the results reported there for comparison purposes. We start
with the first pair, for which an interpretation of the failure of
the WT has been given in Sec. IV. We recall that a single
saddle does contribute to the integral, and that the inability of
the WT to properly work is due to the presence of a pair of
adjacent saddles endowed with the same modulus of the cor-
responding singulants. The results of the H-WT are shown,
for the present case, in Table VI, where the relative error is
reported as a function of the truncation order N. Also in the
present case, similarly to what happened for the Airy func-

tion evaluation, the H-WT approach allows relative errors of
the order of 10−20 to be reached with a relatively small trun-
cation orders �N�20�. The explanation for such a successful
operation can still be led back to Eq. �24�, from which it is
seen that in the two asymptotic series involved in the first
order remainder R�2��k ,N� the expanding coefficients corre-
sponding to the saddles z1 and z3 display an alternating be-
havior since, for each of them, only one dominant adjacent
saddle is present.

The second numerical experiment concerns with the
evaluation of the Pearcey function at the pair �x ,y�
= �−4,12 /�2� �see Table VII�. In this case there are two con-
tributive saddles, and precisely z1�−2.67752. . . and z2
�1.33876. . . + i1.17338. . ., while the third �noncontributive�
saddle is z3=z

2
*. Accordingly, P�x ,y�=I�1��1�+I�2��1�. More-

over, the saddle topology is such that the contribution I�2�

can be retrieved via a direct use of the WT, due to the pres-
ence of just one dominant saddle, and precisely z3. It has
been found �not showed for brevity� that a 35-order WT is
sufficient to obtain the required 20-digits accurate estimate
for it. As far as the contribution I�1� is concerned, the direct
application of the WT is expected to fail, due to the presence
of the adjacent pair of complex conjugate saddles �z2 and z3�,
which exactly reproduces the same pathological situation
studied in the previous numerical experiment. By using the
H-WT approach, however, it is found that, similarly as in
Table VI, a truncation order N=17 is sufficient to recover,
together with the above estimate of I�1�, the 20-digits value
provided in Ref. �26�. For the sake of completeness, we also

TABLE VI. The same as in Table V, but for the numerical
evaluation of the Pearcey function at the pair �x ,y�= �7,1 /�2�. First
column: truncation order. Second column: relative error, obtained
via H-WT, evaluated with respect to the 20-digits “exact” value
provided in Ref. �26�.

N Rel. error

2 	10−4

3 3	10−6

4 7	10−8

5 2	10−9

6 6	10−11

7 2	10−12

8 9	10−14

9 2	10−15

10 3	10−16

11 8	10−17

12 10−17

13 3	10−18

14 3	10−19

15 10−19

16 10−19

17 0

TABLE VII. The same as in Table V, but for the numerical
evaluation of the Pearcey function at the pair �x ,y�= �−4,12 /�2�.
First column: truncation order. Second column: relative error, ob-
tained via H-WT, evaluated with respect to the 20-digits “exact”
value provided in Ref. �26�. The truncation order N refers only to
the H-WT joint action for the evaluation of the contribution corre-
sponding to z1, while that corresponding to the saddle z2 has been
directly evaluated via a 35-order WT.

N Rel. error

2 8	10−5

3 2	10−6

4 2	10−8

5 4	10−10

6 2	10−11

7 3	10−12

8 2	10−13

9 4	10−14

10 2	10−15

11 5	10−16

12 4	10−17

13 10−17

14 10−18

15 3	10−19

16 4	10−20

17 0
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give the results obtained for the third pair considered in Ref.
�26�, i.e., �x=−7,y=1 /�2�. In the present case all three
saddles, z1�−2.694 88. . ., z2�0.101 163. . ., and z3
�2.593 72. . . becomes contributive, so that P�x ,y�=I�1��1�
+I�2��1�+I�3��1�. However, as far as z1 and z3 are concerned,
they have just one adjacent saddle, being A1=A3= �2�, while
in the case of z2, for which A2= �1,3�, the saddle z3 turns out
to be dominant with respect to z1. Since no involved singu-
lant turns out to be real and positive �no Stokes phenomenon
occurs�, each of the above contributions can be directly com-
puted through the WT. In particular, we have found �not
shown in the paper� that a 25-order WT applied on each
asymptotic series is sufficient to recover the 20-digits value
reported in Ref. �26�.

Before concluding this section, however, we also want to
give an example of asymptotic evaluation of the Pearcey
function at a point �x ,y� belonging to the Stokes set defined
in Sec. III C. In particular, we choose x=5 and y=�5+3�3

27 53.
The topology consists in two contributive saddles, z1
�−1.104 57. . . and z2�0.552 287. . . + i2.432 09, while the
third one is z3=z

2
*. Accordingly, P�x ,y�=I�1��1�+I�2��1� /2,

where the factor 1 /2 is due to the presence of the Stokes
phenomenon at z2 which, in turn, leads to a singulant matrix
�Fnm� purely real. The evaluation of the contribution I�2��1�
does not present any problem, since A2= �1,3� and z1 domi-
nates, with F21�0. In particular, it turns out that a 17-order
WT is enough to recover I�2��1� up to 20 digits. As far as
the evaluation of I�1��1� is concerned, A1= �2,3�, with F12
=−F13�0, and 12=0 and 13=1. The results of the appli-
cation of the H-WT are shown in Table VIII.

C. A couple of examples from quantum physics

As a further numerical experiment, we study the
asymptotic evaluation of the integral

N�k� = k1/2�
−�

+�

exp�− k�z2 − 1�2�dz , �27�

for k�0, already considered in Ref. �29� as a simplified
protoype for the modeling of instanton tunneling between
symmetric double wells. As far as the scope of the present
paper is concerned, the integral in Eq. �1� is interesting on its
own, due to the fact that it displays a Stokes phenomenon,
and will be used as a further numerical test for the H-WT.
With reference to Eq. �1�, the integral in Eq. �27� can be
written in the following form:

N�k� = 2k1/2 Re�I�k�� , �28�

with g�z�=1, f�z�= �z2−1�2, and where C is a steepest descent
path, connecting the points −i� and +�, obtained by joining
the line Im�z��0 and the line Re�z��0. There are three
saddles, z1=−1, z2=0, and z3=1, but only two of them, z2
and z3, do contribute to I�k�. As we shall see in a moment
I�2��k� turns out to be purely imaginary, so that the values of
N�k� are determined only by I�3��k�, but the corresponding
asymptotic series turns out to be nonalternating, being Tr

�3�

=2−2r−1�2r−1 /2�! /r!. Thanks to the resurgence-based inter-
pretative scheme, by taking Eq. �21� and the fact that F32

=1 into account, it is clearly seen that, although not directly
involved in the asymptotic evaluation of N�k�, the adjacency
of z2 to z3 is responsible for the nonalternating divergent
character of the asymptotic series defining I�3��k�. The
implementation of the H-WT requires the knowledge of the
expanding coefficients Tr

�2�, whose expression follows from
Eq. �9� with U2�z�=z2−2, and after long but straightforward
algebra turns out to be

Tr
�2� = �− 1�r+1i��

2

�r − 1/2�!
�2r�!�− 2r − 1/2�!

, �29�

where use has been made of the formula

1

�2r�!� d2r

du2r

1

�u2 − u0
2�r+1/2�

u=0

= �− 1�r+1i��

2

1

�u0/�2�4r+1�2r�!�− 2r − 1/2�!
. �30�

The results obtained by applying the H-WT for retrieving
N�k� are illustrated in Fig. 2, which has been conceived for a
direct comparison with Fig. 4 of Ref. �29� to be easily
achieved. In particular, in Fig. 2�a� the behavior of N�k� ob-
tained with the use of the H-WT �dots� is plotted, as a func-

TABLE VIII. The same as in Table VII, but for the numerical

evaluation of the Pearcey function at the pair �x ,y�= �5,�5+3�3
27 53�.

The relative error obtained via H-WT is evaluated with respect to
the 20-digits “exact” value provided by summing the convergent
series defining the Pearcey function as explained in Ref. �13�. The
truncation order N refers only to the H-WT joint action for the
evaluation of the contribution corresponding to z2, while that cor-
responding to the saddle z1 has been directly evaluated via a 17-
order WT.

N Rel. error

2 9	10−5

3 3	10−7

4 3	10−8

5 2	10−10

6 2	10−11

7 3	10−13

8 3	10−14

9 6	10−16

10 4	10−17

11 5	10−18

12 3	10−18

13 2	10−18

14 7	10−19

15 9	10−20

16 5	10−20

17 5	10−20

18 2	10−20

19 10−20

20 0
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tion of k, together with that �solid curve� corresponding to its
exact expression, which turns out to be

N�k� =
��k

2
exp�− k/2��I−1/4� k

2
� + I1/4� k

2
�� , �31�

where In�·� denotes the nth-order modified Bessel function of
the first kind. Note that the range of values of k has been
chosen in order to study the performances of the H-WT very
far from the asymptotic regime. Figure 2�b� shows the be-
havior, as a function of k, of the relative error, evaluated with
respect to the exact value of Eq. �31�, obtained via the use of
the H-WT �dots�. For comparison purposes, the behaviors of
the relative error corresponding to first and second hypera-
sympotic iteration are also reported, as a solid and dotted
line, respectively, as extrapolated from Fig. 4b of Ref. �29�.

It is interesting to put into evidence how the integral in
Eq. �27� presents a structure somewhat similar to the follow-
ing one:

E�g� = �
0

�

exp�− x2 − gx4�dx , �32�

where g�0, whose evaluation has recently been considered
in Ref. �30� as a prototype for zero dimensional �4 theories.

Similarly as for the integral in Eq. �27� the function E�g�
admits an exact representation, and precisely

E�g� =
exp�1/8g�

4�g
K1/4� 1

8g
� , �33�

where Kn�·� denotes the nth-oder modified Bessel function of
the second kind. Furthermore, with reference to Eq. �1�, the
function E�g� can be written as

E�g� =
1

2
I�1� , �34�

with g�z�=1, f�z�=z2+gz4, and where C is the steepest de-
scent path that coincides with the whole real axis. Also in
this case there are three saddles, z1= i /�2g, z2=0, and z3
=z

1
* but, differently from the previous case, only z2 is con-

tributive. As far as the expanding coefficients Tr
�2� are con-

cerned, their behavior for large r can be retrieved directly by
applying resurgence in Eq. �20� and by taking into account
that A2= �1,3� and that the singulants F21=F23=−1 /4g are
real and negative. Accordingly, we should expect an alternat-
ing factorial divergent behavior. This is confirmed at once by
analytically evaluating the coefficients, which, thanks to Eq.
�30�, turn out to be

Tr
�2� = �− 4g�r��

�r − 1/2�!
�2r�!�− 2r − 1/2�!

. �35�

As a matter of fact, we expect that, differently from the pre-
vious case, and differently from the pathological case of
evaluation of the Pearcey function treated above, character-
ized by a similar saddle topology, the evaluation of I�2��1�
could be efficiently carried out by resorting to a low-order
WT. How low the order should be is shown in Fig. 3, which
could be compared to Fig. 4 of Ref. �30�. In particular, it is
seen that in order to achieve relative errors of the same order
of magnitude it is sufficient to choose a WT order of 12.

VII. CONCLUSIONS

Since its introduction nearly twenty years ago, the WT has
proved to be one of the most efficient and easily implement-

0.0 0.5 1.0 1.5 2.0 2.5 3.0
k

1.8

1.9

2.0

2.1
N�k�

�a�

5 10 15 20
k

10�20

10�15

10�10

10�5

1

Relative Error
�b�

FIG. 2. Numerical evaluation of the function N�k� via the
H-WT. �a� Behavior of N�k� obtained, for k� �1 /2,3�, with the use
of the H-WT �dots� and through the exact expression in Eq. �31�
�solid curve�. �b� Behavior, as a function of k, of the relative error,
evaluated with respect to the exact value of Eq. �31�, obtained via
the use of the H-WT �dots�. For comparison purposes, the behaviors
of the relative error corresponding to first and second hyperasym-
potic iteration are also reported, as a solid and dotted line, respec-
tively, as extrapolated from Fig. 4b of Ref. �29�.
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FIG. 3. Behavior of the relative error, evaluated with respect to
Eq. �33�, for the function E�g�, as a function of the parameter g,
obtained by using a WT of order 12. This figure should be com-
pared with Fig. 4 of Ref. �30�.
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able tool for the resummation of factorial divergent series.
Nevertheless, its systematic use in the steepest descent treat-
ment of saddle-point integrals often is pathological behaviors
in which the WT reveals unable to go beyond the superas-
ymptotic estimate provided by the least-term truncation cri-
terion. In the present paper the concept of resurgence has
been employed to give a possible explanation of such patho-
logical behaviors when the Airy and the Pearcey functions
are asymptotically evaluated. In particular, it has been found
that the topology of the whole set of the saddle points asso-
ciated to the function f�z� strongly influences the resumma-
tion capabilities of the WT, in the presence of Stokes phe-
nomena as well as when two �or more� adjacent saddles have
the same singulant modulus. A powerful, easily implement-
able, resummation scheme aimed at dealing with the above
pathological cases has then been proposed. Such a scheme
anticipated, as a preliminary step, to operate a first �not nec-
essarily optimum� truncation on each pathological series and,
subsequently, employed the WT only on the asymptotic se-

ries which are generated by the first-stage hyperasymptotic
treatment of the corresponding diverging remainder. This
joint action �the H-WT� seems, at least for the cases numeri-
cally investigated, to keep the main virtues of both ap-
proached, namely a relatively insensitivity with respect to the
“initial data” �characteristic of H� and an implementation
ease and a convergence speed typical of the WT. The pre-
liminary results obtained here should encourage a deeper in-
vestigation, both theoretical and numerical, toward the study
of the mechanisms of the H-WT and its application to the
asymptotic evaluation of integrals characterized by more
complex saddle points topologies such as, for instance, those
involved in the study of higher-order diffraction catastrophes
�swallowtail function, elliptical and hyperbolic umbilics�
�31� or those recently considered in Refs. �32,33� as far as
the scattering of whispering-galley modes is concerned. The
study of the interaction between hyperasymptotic stages of
order higher than 1 and the WT would also be of interest.
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